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Final report on ARO Proposal Number 56295PHQC: “Center For Quantum
Algorithms and Complexity”

Umesh Vazirani

1 Introduction:

Quantum Hamiltonian Complexity (QHC) is an emerging area that combines deep questions and
techniques from both quantum complexity theory and condensed matter physics. It also provides
some of the basic theory to support the major effort in condensed matter physics to explore highly
entangled states of matter. At the heart of QHC is the striking feature of quantum systems — one
of the great challenges posed by the laws of quantum mechanics is that the complexity of quantum
systems grows exponentially in the number of particles, making it prohibitively hard to classically
simulate or even understand them. Is it possible that ”typical” quantum systems occurring in Nature
do not suffer this exponential overhead (after all if this were not the case, how is it possible to do
physics)?

Remarkably, these questions are intimately related to the most basic questions in computational
complexity theory, namely the complexity of constraint satisfaction problems. A deep insight from con-
densed matter physics is the area law for gapped Hamiltonians. This sweeping conjecture in condensed
matter physics, called the area law, asserts that gapped Hamiltonians have limited entanglement in
their ground states. More precisely, it asserts that for any subset L of particles, the entanglement
entropy between L and L̄ is bounded by the surface area of L (the area is measured by the number
of terms of the Hamiltonian H that cross between L and L̄), rather than (the trivial bound of) the
volume of L(see Figure 1). Intuitively, the area law suggests that most of the entanglement in the
ground state is local; indeed if this were true in a precise sense then the ground state would have a
succinct classical description. In a seminal paper, Hastings proved that ground states of gapped 1D
systems obey an area law. We give a new combinatorial approach to proving the area law for 1D
systems via the detectability lemma, in the process exponentially improving on Hastings’ bounds in
the frustration free case [2,3,4].

The heuristic DMRG has been an invaluable practical tool for solving 1D quantum systems every
since its introduction about two decades ago. But there is no proof of when it works. We give an
efficient algorithm for finding an MPS approximation to the ground state, in the case that it can be
approximated by a Matrix Product State (MPS) with constant bond dimension [5].

Entanglement is a fundamental feature of quantum systems, and understanding its nature is a basic
challenge in quantum computation. We study it in a number of basic contexts, including the complexity
of parallel repetition of entangled games [6], and Bell-inequalities distinguishing non-locality versus
entanglement [7].

A source of independent random bits is a basic resource in many modern-day computational
tasks, such as cryptography, game theoretic protocols, algorithms and physical simulations. Moreover,
these tasks place different demands on the quality of the randomness (e.g. the need for privacy in
cryptographic applications). It is of great interest, therefore, to construct a physical device for reliably
and provably outputting a stream of random bits. But suppose even that such a device were built:
how could one verify that the generated bits are indeed random? Testing for the the production of
uniformly random bits poses a fundamental problem — since all outputs should be generated with
equal probability there is no basis for rejecting any particular output of the device. We show how to
use entanglement to give a way of generating certifiably random numbers which are provably secure
even against a quantum adversary [9]. The method is based on an earlier paper in which we report
an implementation of optimal extractors against quantum storage [8].
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2 Scientific Progress:

Quantum Hamiltonian Complexity:

How efficiently can the ground state of a local Hamiltonian be computed? This is a question
that lies at the heart of an emerging area called ”quantum Hamiltonian complexity”, that addresses
fundamental issues in both quantum complexity theory and condensed matter physics. Ground states
of quantum many-body systems on a lattice, which are ubiquitous in condensed-matter physics, provide
a natural setting to explore this question. These systems are generally described by a local Hamiltonian
that models interactions between neighboring particles. A remarkable conjecture in condensed-matter
physics dating back about a half century is the Area Law, which strongly bounds the entanglement
in ground states of gapped local Hamiltonians. Roughly, it says that the entanglement in such states
is very local, and the entanglement entropy scales like surface area rather than volume of any region.
In a seminal paper (Hastings 2007 J. Stat. Mech. (2007) P8024), Hastings proved that ground states
of gapped 1D systems obey an area law. More specifically, if the dimension of each particle is d, and
the spectral gap of the Hamiltonian is ?, then the theorem states that the entanglement entropy is
bounded by exp(X), where X = log(d/?). Hastingss result implies that ground states of gapped 1D
systems can be well-approximated by a polynomial size tensor network (MPS), which can in turn be
used to approximate any local observable efficiently on a classical computer.

In [2], we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced
in the context of the quantum PCP challenge [1], which is a major open question in quantum Hamilto-
nian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used
in place of the celebrated LiebRobinson (LR) bound to prove several important results in quantum
Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a
plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We pro-
vide an alternative simpler proof of the DL that removes a key restriction in the original statement [1],
making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we
apply the DL to derive a simpler and more intuitive proof of Hastings’ seminal one-dimensional (1D)
area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (the proofs are restricted to frustration-free
systems). Proving the area law for two and higher dimensions is one of the most important open
questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof
holds out hope for a possible generalization. Finally, we also provide a more general explanation of
how the DL can be used to replace the LR bound.

In a sequence of follow-up papers, we have improved Hastingss bound by an exponential factor
for frustration-free Hamiltonians [3,4]. Ignoring lower-order terms, the new bound on entanglement
entropy is O(X3). The proof uses completely new techniques, including a new bootstrapping technique
for finding a product state with large overlap with the ground state, and combinatorial tools such as
Chebyshev polynomials to construct an Approximate Ground State Projector. These results leave
us at the threshold of being able to tackle three fundamental issues. First, in terms of dealing with
systems of dimension greater than 1, the new techniques can be used in conjunction with simple locality
considerations to show an entanglement entropy bound of O(Area2). While this stops just short of
giving a non-trivial bound for 2D systems, it does give a sub-volume law for any system of fractal
dimension ¡ 2. Extending these results to 2D systems is a central problem in this field, and is awaiting
a better technique for incorporating the locality of the Hamiltonian along the cut. Second, the new
proof also gives very strong upper bounds for the Schmidt coefficients of the ground state. For 1D
systems these bounds can be used to construct much smaller tensor network (MPS) representations of
these states. Finally, these techniques should be strengthened to deal with general, frustrated systems.

The area law results show that the ground state of a 1D system can be well approximated by a
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succinct classical description in the form of a Matrix Product State (MPS). How hard is it to find
such an approximating MPS? The DMRG method is very effective at finding ground states of 1D
quantum systems in practice, but it is a heuristic method, and there is no known proof for when it
works. In [5] we describe an efficient classical algorithm which provably finds a good approximation
of the ground state of 1D systems under well defined conditions. More precisely, our algorithm finds
a Matrix Product State of bond dimension D whose energy approximates the minimal energy such
states can achieve. The running time is exponential in D, and so the algorithm can be considered
tractable even for D which is logarithmic in the size of the chain. The result also implies trivially
that the ground state of any local commuting Hamiltonian in 1D can be approximated efficiently; we
improve this to an exact algorithm.

Quantum Entanglement:

In [6], we consider one-round games between a classical referee and two players. One of the main
questions in this area is the parallel repetition question: Is there a way to decrease the maximum
winning probability of a game without increasing the number of rounds or the number of players?
Classically, efforts to resolve this question, open for many years, have culminated in Raz’s celebrated
parallel repetition theorem on one hand, and in efficient product testers for PCPs on the other. In
the case where players share entanglement, the only previously known results are for special cases of
games, and are based on techniques that seem inherently limited. Here we show for the first time
that the maximum success probability of entangled games can be reduced through parallel repetition,
provided it was not initially 1. Our proof is inspired by a seminal result of Feige and Kilian in the
context of classical two-prover one-round interactive proofs. One of the main components in our proof
is an orthogonalization lemma for operators, which might be of independent interest.

In [7], we provide an explicit example of a Bell inequality with 3 settings and 2 outcomes per
site for which the largest violation is not obtained by the maximally entangled state, even if its
dimension is allowed to be arbitrarily large. This complements recent results by Junge and Palazuelos
(arXiv:1007.3042) who show, employing tools from operator space theory, that such inequalities do
exist. Our elementary example provides arguably the simplest setting in which it can be demonstrated
that even an infinite supply of EPR pairs is not the strongest possible nonlocal resource.

Quantum Random Number Generation:

A source of independent random bits is a basic resource in many modern-day computational tasks,
such as cryptography, game theoretic protocols, algorithms and physical simulations. Any attempt to
actually build a physical device to generate random bit sequences runs into a fundamental problem:
how do you test whether the output is really random. In other words, since all outputs should be
generated with equal probability there is no basis for rejecting any particular output of the device.

Quantum mechanics allows for a remarkable random number generator: its output is certifiably
random in the sense that if the output passes a simple statistical test, and there is no information
communicated between the two boxes in the randomness generating device (based, say, on the speed
of light limit imposed by special relativity), then the output is certifiably random. Moreover, the proof
that the output is truly random does not even depend upon the correctness of quantum mechanics!

This is based on a remarkable line of work inspired by device independent quantum cryptography,
starting with an observation in Colbeck’s Phd thesis, and further developed in a paper by Pironio et.
al. to give a scheme which certifiably expanded

√
n random bits to n random bits. There were two

major issues left open. The first was whether the expansion factor could be made exponential rather
than polynomial. Even more important was the question of whether the randomness certification could
be guaranteed against a quantum adversary. i.e. if the devices were manufactured by an adversary
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who can make use of quantum phenomena like entanglement.
In [9], we gave resolved both issues. We gave a protocol through which a pair of quantum mechanical

devices may be used to generate n bits of true randomness from a seed of O(log n) uniform bits. The
bits generated are certifiably random based only on a simple statistical test that can be performed by
the user, and on the assumption that the devices obey the no-signaling principle. No other assumptions
are placed on the devices’ inner workings. A modified protocol uses a seed of O(log3 n) uniformly
random bits to generate n bits of true randomness even conditioned on the state of a quantum adversary
who may have had prior access to the devices, and may be entangled with them.

The proof of security is quite non-trivial and is based on the security of Trevisan’s extractor
against quantum adversaries, which is also reported here [8]. We show that Trevisan’s extractor and
its variants are secure against bounded quantum storage adversaries. One instantiation gives the first
such extractor to achieve an output length Θ(K − b), where K is the source’s entropy and b the
adversary’s storage, together with a poly-logarithmic seed length. Another instantiation achieves a
logarithmic key length, with a slightly smaller output length Θ((K−b)/Kγ) for any γ > 0. In contrast,
the previous best construction could only extract (K/b)1/15 bits. Some of our constructions have the
additional advantage that every bit of the output is a function of only a polylogarithmic number of
bits from the source, which is crucial for some cryptographic applications. Our argument is based
on bounds for a generalization of quantum random access codes, which we call quantum functional
access codes. This is crucial as it lets us avoid the local list-decoding algorithm central to previous
approaches, which was the source of the multiplicative overhead.
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